PAGE
2

[image: image1.png]

Duet Module Interface Specification

for a
Rollease Acmeda ARC2
Motor Processor

TABLE OF CONTENTS

3Introduction

4Overview

5Implementation

8Port Mapping

9Channels

11Command Control

16Command Feedback

21Important Notes

22Programming Notes

Revision History

	Date
	Initials
	Comments

	07-01-2019
	DGG
	v1.0.0 Initial Release

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Introduction

This is a reference manual to describe the interface provided between an AMX NetLinx system and a Rollease Acmeda Pulse Hub (herein referred to as the “device”) utilizing the Automatic Radio Communication 2 (ARC2) API. The device supports a TCP connection only.
This module was written using Café Duet firmware version v3.21.343. NetLinx Studio version 4 build 4.4.1626, Café Duet application platform and runtime version 1.8.190 and Café Duet application version 1.8.85.

The Comm. module must be informed of the IP address of the device it is to connect to. This must be done manually via a telnet session, or can be automated from the UI module. These properties must be set using the ‘PROPERTY-‘ command. The ‘REINIT’ command is used to notify the Comm. module that new properties are now available and to start using them. When these commands are used in the appropriate order, the Comm. module will attempt to connect to the specified IP address periodically until a connection is made or a new IP address is submitted using the ‘PROPERTY-‘ and ‘REINIT’ commands. Please see the Programming Notes section for additional information.

Overview

The COMM module translates between the standard interface described below and the device protocol. It parses the buffer for responses from the device, sends strings to control the device, and receives commands from the UI module or telnet sessions.

A User Interface (UI) module is also provided. This module uses the standard interface described below and parses the command responses for feedback.

The following diagram gives a graphical view of the interface between the interface code and the Duet module.

Some functionality in the device interface may not be implemented in the API interface. In cases where device functions are desired but not API-supported, the PASSTHRU command may be used to send any and all device-protocol commands to the device. See the PASSTHRU command and the Adding Functions to Modules section for more information.

A sample UI module and a touch panel file are provided in the module package. These are not intended to cover every possible application, but can be expanded as needed by a dealer to meet the requirements of a particular installation.

Implementation

To interface to the AMX Rollease Acmeda ARC2 module, the programmer must perform the following steps:

1. Define the device ID for the device that will be controlled.

2. Define the main virtual device ID that the device COMM module will use to communicate with the main program and User Interface. Duet virtual devices use device numbers 41000 - 42000.
3. If a touch panel interface is desired, a touch panel file (Rollease Acmeda ARC2 Demo v1_0.TP4) and UI module (Rollease Acmeda ARC2 UI v1_0.axs) have been created for testing.

4. The Duet module (Rollease_Acmeda_ARC2_dr1_0_0.jar) must be included in the program with a DEFINE_MODULE command. This command starts execution of the module and passes in the following key information: the device ID of the device to be controlled, and the virtual device ID for communicating to the main program.

An example of how to do this is shown below.

DEFINE_DEVICE

///

// PHYSICAL DEVICES

///

dvRollease

= 0:4:0;

///

// VIRTUAL DEVICES

///

// MAIN

vdvRollease
= 41001:1:0;

// MOTORS

vdvMotor1
= 41001:1:0;

vdvMotor2
= 41001:2:0;

vdvMotor3
= 41001:3:0;

vdvMotor4
= 41001:4:0;

vdvMotor5
= 41001:5:0;

///

// TOUCHPANELS

///

dvPanel
= 10001:1:0;

(***)

(* CONSTANT DEFINITIONS GO BELOW *)

(***)

DEFINE_CONSTANT

///

// DEVICE INFORMATION

///

CHAR IP_ADDRESS[]
= '192.168.1.79';

(***)

(* VARIABLE DEFINITIONS GO BELOW *)

(***)

DEFINE_VARIABLE

VOLATILE DEV vdvMotors[] =

{

vdvMotor1,

vdvMotor2,

vdvMotor3,

vdvMotor4,

vdvMotor5

}

(***)

(* STARTUP CODE GOES BELOW *)

(***)

DEFINE_START

///

// DEFINE MODULES

///

// COMM MODULE

DEFINE_MODULE 'Rollease_Acmeda_ARC2_dr1_0_0' modCommRollease(vdvRollease, dvRollease);

// UI MODULES

DEFINE_MODULE 'Rollease Acmeda ARC2 UI v1_0' modUiRollease(dvPanel, vdvRollease, vdvMotors);

(***)

(* THE EVENTS GO BELOW *)

(***)

DEFINE_EVENT

///

// VIRTUAL DEVICE ONLINE

///

DATA_EVENT[vdvRollease]

{

ONLINE:

{

WAIT 50 'SETTLE DEVICE'

{

SEND_COMMAND vdvRollease,"'DEBUG-4'";

SEND_COMMAND vdvRollease,"'PROPERTY-IP_Address,', IP_ADDRESS";

SEND_COMMAND vdvRollease,"'MOTORADD[61O]'";

SEND_COMMAND vdvRollease,"'MOTORADD[C3U]'";

SEND_COMMAND vdvRollease,"'MOTORADD[91D]'";

SEND_COMMAND vdvRollease,"'MOTORADD[C95]'";

SEND_COMMAND vdvRollease,"'MOTORADD[ENJ]'";

SEND_COMMAND vdvRollease,"'REINIT'";

}

}

}
Upon initialization the AMX Comm module will communicate with the device and information will be exchanged.

Port Mapping

This module uses multiple virtual device ports in order distinguish events for one motor from another. The module supports a maximum of 30 motors. Multiple instances of this module can be included in your program if control of more motors is required. Motors are assigned ports 1 – 30. All other functionality not specifically related to controlling motors takes place on port 1.
	Virtual Device
	Channels
	Levels
	Control
	Feedback

	41001:1:0

Main Functionality
	251, 252, 301, 302, 303, 304
	N/A
	See Command Control List
	See Command Feedback Lists

	41001:1:0 – 41001:30:0
Motor Control
	311, 312, 321, 322, 323, 324, 325
	7, 8
	See Command Control List
	See Command Feedback Lists

Table 1 - Port Mapping

Channels

The UI module controls the device and motors via channel events (NetLinx commands pulse, on, and off) sent to the COMM module. The channels supported by the COMM module are listed below. These channels are associated with the virtual device(s) and are independent of the channels associated with the touch panel device. Not all channels will be available on all virtual ports.
Note: An ‘*’ indicates an extension to the standard API

	Channel
	Description

	251
	ON: Hub is Online/Communicating – feedback only

OFF: Hub is not Online/Communicating – feedback only

(Port 1 only)

	252
	ON: Hub Data is Initialized – feedback only

OFF: Hub Data is not Initialized – feedback only

(Port 1 only)

	*301
	PULSE: Toggle debug state

(Ports 1 Only)

	*302
	ON: Set debug state to on – feedback also

OFF: Set debug state to off – feedback also

(Port 1 only)

	*303
	PULSE: Toggle setup state

(Ports 1 Only)

	*304
	ON: Set setup state to on – feedback also

OFF: Set setup state to off – feedback also

(Port 1 only)

	*311
	ON: Motor is Online/Communicating – feedback only

OFF: Motor is not Online/Communicating – feedback only

(Ports 1 – 30)

	*312
	ON: Motor Data is Initialized – feedback only

OFF: Motor Data is not Initialized – feedback only

(Ports 1 – 30)

	*321
	PULSE: Trigger motor jog up/open.

(Ports 1 – 30)

	*322
	PULSE: Trigger motor jog down/close.

(Ports 1 – 30)

	*323
	PULSE: Trigger motor stop.
(Ports 1 – 30)

	*324
	PULSE: Trigger motor move up/open. Motor will continue moving until manually stopped or until upper limit is reached.

(Ports 1 – 30)

	*325
	PULSE: Trigger motor move down/close. Motor will continue moving until manually stopped or until lower limit is reached.

(Ports 1 – 30)

Table 2 - Virtual Device Channel Events

Levels

The UI module controls the device and motors through level events (NetLinx command send_level) sent to the COMM module. The levels supported by the COMM module are listed below. These levels are associated with the virtual device(s) and are independent of the levels associated with the touch panel device.

Note: An ‘*’ indicates an extension to the standard API.

	Level
	Description

	*7
	Current Motor Position (0..255)
(Ports 1 – 30)

	*8
	Current Motor Rotation (0..255)
(Ports 1 – 30)

Table 3 - Virtual Device Level Events

Command Control

The UI module controls the device and motors via command events (NetLinx command send_command) sent to the COMM module. The commands supported by the COMM module are listed below.

Note: An ‘*’ indicates an extension to the standard API.

	Command
	Description

	DEBUG-<value>
	Set the state of debugging messages in the UI module and the Comm. module.

<value> : 1 = set only error messages on

 2 = set error and warning messages on

 3 = set error, warning & debug messages on

 4 = set all messages on

Example:

DEBUG-1

(Port 1 only)

	?DEBUG
	Request the state of the debug feature.

Example:

?DEBUG

(Port 1 only)

	*?HUB_MAC
	Request the MAC address of the hub. If the value is not initialized, an empty string is returned.

Example:

?HUB_MAC

(Port 1 only)

	*?HUB_NAME
	Request the name of the hub. If the value is not initialized, an empty string is returned.
Example:

?HUB_NAME
(Port 1 only)

	*?MOTOR_NAME
	Request the name of a motor. If the value is not initialized, an empty string is returned.

Example:

?MOTOR_NAME

(Ports 1 - 30)

	*?MOTOR_ROOM
	Request the room of a motor. If the value is not initialized, an empty string is returned.

Example:

?MOTOR_ROOM

(Ports 1 - 30)

	*?MOTOR_TYPE
	Request the type of a motor. If the value is not initialized, an empty string is returned.

Example:

?MOTOR_TYPE

(Ports 1 - 30)

	*?MOTOR_VERSION
	Request the version of a motor. If the value is not initialized, an empty string is returned.

Example:

?MOTOR_VERSION

(Ports 1 - 30)

	*?MOTOR_VOLTAGE
	Request the voltage of a motor. If the value is not initialized, an empty string is returned.

Example:

?MOTOR_VOLTAGE

(Ports 1 - 30)

	*MOTORADD[<address>]
	Add a motor to be controlled by the module. This must be followed by the REINIT command to take effect.
Example:

MOTORADD[ABC]
(Port 1 only)

	PASSBACK-<state>
	Enable or disable response reporting from the device. When enabled device responses will be sent as strings to the virtual device.

Note: By default, this is set to off at startup.

<state> : 0 = Off (default)

 1 = On

Example:

PASSBACK-1

(Port 1 only)

	PASSTHRU-<string>
	Allows user the capability of sending commands directly to whatever device is attached with minimal processing by the Duet module. User must be aware of the protocol implemented by the device to use this command. This gives the user access to features that may not be directly supported by the module. For more information, see the “Adding Functions to Modules” section below.

<string> : string to send to device

Example:

PASSTHRU-!123pVc?;
(Port 1 only)

	PROPERTY-<key>,<value>
	Set the value of property <key> to <value>. This must be followed by the REINIT command to take effect. These values are not initialized by default.

<key> : IP_Address

<value> : String = representing an IP address to use for connecting to the device
Example:

PROPERTY-IP_Address,192.168.1.100
(Port 1 only)

	?PROPERTY-<key>
	Get the value of a property <key>. If the value is not initialized, an empty string is returned.

<key> : IP_Address

Example:

?PROPERTY-IP_Address

(Port 1 only)

	REINIT
	Re-initializes the communication link and data.

Note: This command deletes any messages waiting to go out to the device.

Example:

REINIT

(Port 1 only)

	?VERSION
	Query for the current version number of the Duet module. If the value is not initialized, an empty string is returned.
Example:

?VERSION

(Port 1 only)

Table 4 – Send Command Definitions
Command Feedback

The COMM module provides feedback to the User Interface module for device changes via command events. The commands supported are listed below.

PLEASE NOTE: Feedback is only provided when there is a state change. If no state change resulted from the command sent in, then no feedback will be returned.
Note: An ‘*’ indicates an extension to the standard API.
	Command
	Description

	DEBUG-<value>
	Reports the state of debugging messages in the UI module and the Comm. module.

<value> : 1 = set only error messages on

 2 = set error and warning messages on

 3 = set error, warning and debug messages on

 4 = set all messages on

Example:

DEBUG-1

(Port 1 only)

	HUB_MAC-<value>
	Reports the MAC address of the hub. If the value is not initialized, an empty string is returned.

Example:

HUB_MAC-00:00:00:00:00:00
(Port 1 only)

	HUB_NAME-<value>
	Reports the name of the hub. If the value is not initialized, an empty string is returned.

Example:

HUB_NAME-My Hub
(Port 1 only)

	MOTOR_ADDRESS-<value>
	Reports the address of the last motor that moved while in “setup” mode.

Example:

MOTOR_ADDRESS-ABC
(Port 1 only)

	MOTOR_NAME-<value>
	Reports the name of a motor. If the value is not initialized, an empty string is returned.

Example:

MOTOR_NAME-My motor
(Ports 1 - 30)

	MOTOR_ROOM-<value>
	Reports the room of a motor. If the value is not initialized, an empty string is returned.

Example:

MOTOR_ROOM-My room
(Ports 1 - 30)

	MOTOR_TYPE-<value>
	Reports the type of a motor. If the value is not initialized, an empty string is returned.

Example:

MOTOR_TYPE-DC
(Ports 1 - 30)

	MOTOR_VERSION-<value>
	Reports the version of a motor. If the value is not initialized, an empty string is returned.

Example:

MOTOR_VERSION-1.1
(Ports 1 - 30)

	MOTOR_VOLTAGE-<value>
	Reports the voltage of a motor. If the value is not initialized, an empty string is returned.

Example:

MOTOR_VOLTAGE-01123
(Ports 1 - 30)

	PROPERTY-<key>,<value>
	Reports the value of property <key>.

<key> : IP_Address

<value> : String = representing an IP address to use for connecting to the device

Example:

PROPERTY-IP_Address,192.168.1.100
(Port 1 only)

	VERSION-<value>
	Reports the current version number of the Duet module.

<value> : current version number in xx.yy.zz format

Example:

VERSION-1.0.0

(Port 1 only)

Table 5 - Command Feedback Definitions

Programming Notes

Hub

In order to establish a communication connection between the module and the device, the module must be informed of the IP address of the device it is to connect to. Use the PROPERTY- command to set this information. Here is an example of how this command is used:

Send_Command 41001:1:0, ‘PROPERTY-IP_Address,192.168.1.100’
Note that your virtual device (41001:1:0) and the IP address may differ from this example. Substitute the appropriate values where necessary.

Motors
The number of motors in an installation may differ. It is therefore impossible to know ahead of time how many motors you wish to link to a particular hub and control via the module associated with that hub.

This being the case, the programmer must “teach” the module which motors will be used and controlled from a particular hub.

To do this, use the MOTORADD command to pass in the address for each motor you wish to control. For each MOTORADD command sent in (up to 30 per module), the module will automatically bind that motor to the next available port.

Use the REINIT command after the hub IP information has been sent (shown above) and all motors have been added. This will force all settings to take effect.

Here is an example of how these commands are used:

Send_Command 41001:1:0, ‘MOTORADD[ABC]’
Send_Command 41001:1:0, ‘MOTORADD[DEF]’

Send_Command 41001:1:0, ‘MOTORADD[GHI]’

Send_Command 41001:1:0, ‘REINIT’

Note that your virtual device (41001:1:0) and the motor addresses may differ from this example. Substitute the appropriate values where necessary.

Retrieving Motor Addresses
In order to send in the addresses for the motors in your system (shown above), you must first determine what those addresses are. In order to do this, use the Rollease Automate app on an iOS or Android device to set up your hub and link your motors to it.
Once the hub/motors have been set up using the Automate app, load a NetLinx program with the Duet module. Remember to send in the command for the hub IP address (shown above). You do not need to send in the MOTORADD commands yet as you do not yet know them.

Once the program and module are loaded, turn on channel 304 on the first port of the module. This will put the module into “setup” mode. While in setup mode, use the Automate app to move the motors you have one at a time. After each movement, the module will report the motor address of the last motor that moved via a MOTOR_ADDRESS command on port 1. Use the address returned from this command in the MOTORADD command for that motor.
Once the addresses for all your motors have been ascertained, add each motor to your module with the MOTORADD command using the address that you have discovered for that motor.

Adding Functions to Modules

Commands to the device

This module supplies a mechanism to allow additional device features to be added to software using the module. This is the ‘PASSTHRU-‘ command, which allows protocol strings to be passed through the module. The device-specific protocol must be known in order to use this feature.

As an example of a passthrough command if you wanted to request the current voltage of the motor at address 123, you would send the following command to the first virtual port of the module.

Send_Command 41001:1:0, "’PASSTHRU-!123pVc?;’"

Note that your virtual device (41001:1:0) may differ from this example. Substitute the appropriate value if necessary.

The reason to use ‘PASSTHRU-‘ instead of sending a protocol string directly to the device port is that the device may require command queuing, calculation of checksums, or other internal processing, which would not be done if the string was sent directly. Because of this, it is best to filter all direct communication TO the device through the module.

Responses from the device
To see all replies from the device unfiltered by the module, enable PASSBACK and use a DATA_EVENT with a string handler in the UI code. Again, the device-specific protocol must be known in order to interpret these responses. Even when PASSBACK is enabled, the module will still interpret device responses according to the standard API.

Rollease

Acmeda

ARC2

Duet

COMM Module

NetLinx

UI Module

Virtual

Device

SNAPI

AMX (3000 Research Drive (Richardson, TX (75082

469.624.8000 (800.222.0193 (469.624.7153 (fax)

